変換表
|
原関数 't' 領域 / 時間領域
|
像関数 's' 領域 / 周波数領域
|
収束域
|
単位インパルス
|
|
|
|
単位ステップ関数
|
|
|
|
ランプ関数
|
|
|
|
n 乗 (n は整数)
|
|
|
|
q 乗 (q は複素数)
|
|
|
|
n 乗根
|
|
|
|
指数減衰
|
|
|
|
n 乗の指数減衰
|
|
|
|
理想遅延
|
|
|
|
遅延付き単位ステップ関数
|
|
|
|
遅延付き n 乗の指数減衰
|
|
|
|
指数関数的接近
|
|
|
|
正弦関数
|
|
|
|
余弦関数
|
|
|
|
双曲線正弦関数 (ハイパボリックサイン)
|
|
|
|
双曲線余弦関数 (ハイパボリックコサイン)
|
|
|
|
正弦波の指数減衰
|
|
|
|
余弦波の指数減衰
|
|
|
|
自然対数
|
|
|
|
第 1 種ベッセル関数
|
|
|
|
第 1 種変形ベッセル関数
|
|
|
|
第 2 種ベッセル関数 (次数が 0 の場合)
|
|
|
|
第 2 種変形ベッセル関数 (次数が 0 の場合)
|
|
|
|
誤差関数
|
|
|
|
凡例
- :ヘビサイド関数。
- :ディラックのデルタ関数。
- :ガンマ関数。n が自然数の場合、Γ(n + 1) = n!。
- :オイラー・マスケローニ定数.
- t は時間に対応する実数。
- s は複素数で複素角周波数と呼ばれる。Re{s} はその実部。
- α, β, τ, ω は実数。
- n は整数。
|